

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

¹³C-NMR Spectra of Some π -(Arene)-Tricarbonylchromium(O) Complexes

F. Coletta^a; A. Gambaro^a; G. Rigatti^a; A. Venzo^a

^a Istituto di Chimica-Fisica dell'Universita' di Padova, Padova, Italy

To cite this Article Coletta, F. , Gambaro, A. , Rigatti, G. and Venzo, A.(1977) ¹³C-NMR Spectra of Some π -(Arene)-Tricarbonylchromium(O) Complexes', Spectroscopy Letters, 10: 12, 971 — 977

To link to this Article: DOI: 10.1080/00387017708065034

URL: <http://dx.doi.org/10.1080/00387017708065034>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

^{13}C -NMR SPECTRA OF SOME π -(ARENE)-TRICARBONYLCHROMIUM(0) COMPLEXES

KEY WORDS: π -(Arene)-tricarbonylchromium(0), ^{13}C -NMR spectra

F. Coletta, A. Gambaro, G. Rigatti, A. Venzo
Istituto di Chimica-Fisica dell'Universita' di Padova,
Via Loredan, 2 - 35100 Padova (Italy)

Many ^{13}C -NMR studies dedicated to the π -(Arene)-tricarbonylchromium(0) complexes are concerned with the origin of the large upfield shifts of the aromatic carbons on the coordination to the chromiumtricarbonyl group. This effect is not yet completely understood and various hypotheses have been formulated to justify it (1)(2)(3)(4).

As an experimental contribution to the subject we report the ^{13}C -NMR spectra of some π -(Arene)-tricarbonylchromium(0) complexes where the arene ligands are polycyclic aromatic hydrocarbons (condensed, uncondensed and with an alicyclic moiety).

The presence of either complexed and uncomplexed rings in the same molecule allows to test the ^{13}C chemi-

cal shift variations due to the chemical bond formation and also long range interactions as experienced by the other ring.

In the Table are reported the ^{13}C chemical shifts for free and complexed hydrocarbons. The peak assignments for the free arenes have been given elsewhere (5) (6) (7), while the attribution in the complexes has been determined with off-resonance experiments, undecoupled spectra and considering the relaxation times (8). Only few ambiguities arise for the assignment of some phenanthrene complex resonances, but this is unimportant for the discussion; the chemical shift proposed for C-13 and C-14 resonances is more probable than the reversed one, which would cause for the C-13 resonance an up-field shift too large compared to the analogous quaternary carbon atoms in similar complexed hydrocarbons (e. g. Naphthalene).

The experimental results show that the ^{13}C shift produced by the metalcarbonyl group in the coordinated ring is scarcely affected by the structure of the rest of the ligand.

The average shift of the complexed ring is about 35 ppm upfield relative to the resonance in free arenes, while the corresponding shift in the uncomplexed moiety is noticeably smaller. This fact is a proof that there is no metal exchange between the ligand rings, at least at room temperature. Furthermore, each complex shows a single carbonyl resonance in the 232 ppm region: this

result indicates that there is free rotation of the carbonyls, as found for other similar complexes (9).

In the uncoordinated rings the small variations are independent from the saturation of the carbon atoms and from the ring mobility and does not seem correlated with carbon-metal bond magnetic anisotropy, as previously suggested (4). Long range charge polarization effects may also be present.

Useful hints are derivable from the differences of the chemical shifts in the free ligand/benzene ($\Delta\delta_F = \delta_{\text{ligand}} - 128.6^*$) and π -(Arene) Cr(CO)₃/ π -(benzene) Cr(CO)₃ pairs ($\Delta\delta_c = \delta_{\text{complex}} - 92.4^*$ for the coordinated ring and $\Delta\delta'_c = \delta_{\text{complex}} - 128.6^*$ for the uncoordinated one). This result shows that $\Delta\delta_F$ and $\Delta\delta_c$ (or $\Delta\delta'_c$) are generally comparable in magnitude and sign. This agreement justifies the hypothesis that for the carbons of the complexed rings the main contribution to the chemical shift is the same of that observed in the π -(benzene)-tricarbonylchromium(σ)/benzene pair, on which are superimposed terms related to the specific molecule. Further work is in progress on this subject (13).

EXPERIMENTAL

The hydrocarbons were carefully purified commercial samples, and the complexes were prepared following the literature methods (14). The spectra were recorded at

* $\delta_{\text{benzene}} = 128.6$ and $\delta_{(\text{benzene})\text{Cr}(\text{CO})_3} = 92.4$ ppm

T A B L E

¹³C-NMR chemical shifts ^(a) of π -(arene)-tricarbonylchromium(o) complexes and of parent ligands

		Parent	Complex	$\Delta^{(b)}$
Diphenyl				
	C_1	141.2	136.4	- 4.8
	$C_{2,6}$	127.1	127.0	- 0.1
	$C_{3,5}$	128.7	128.8	0.1
	C_4	127.1	129.0	1.9
	$C_{2'}$	141.2	110.6	-30.6
	$C_{2',6'}$	127.1	92.3	-34.8
	$C_{3',5'}$	128.7	92.7	-36.0
	$C_{4'}$	127.1	91.6	-35.5
	$C\equiv O$	-	232.4	-
Naphthalene				
	$C_{1,4}$	127.9	128.7	0.8
	$C_{2,3}$	125.8	128.7	2.9
	$C_{5,8}$	127.9	92.5	-35.4
	$C_{6,7}$	125.8	20.8	-35.0
	$C_{8,10}$	133.4	105.7	-27.7
	$C\equiv O$	-	231.6	-

(continued...)

T A B L E (continued)

Indane	C ₁	25.7	24.0	- 1.7
	C _{2, 9}	33.2	32.3	- 0.9
	C _{3, 8}	144.2	114.5	-29.7
	C _{4, 7}	124.4	90.1	-34.3
Cr(CO) ₃	C _{5, 6}	126.0	91.8	-34.2
	C≡O	-	232.2	-
Phenanthrene	C ₁	128.5	130.2	1.7
	C ₂	126.5	125.6 ^(c)	-0.9
Cr(CO) ₃	C ₃	126.5	128.2 ^(c)	1.7
	C ₄	122.8	122.2	- 0.4
	C ₅	122.8	86.1	-36.5
	C ₆	126.5	89.7	-34.8
	C ₇	126.5	89.7	-34.8
	C ₈	128.5	92.0	-36.5
	C ₉	126.9	128.4 ^(d)	1.5
	C ₁₀	126.9	129.3 ^(d)	2.4
	C ₁₁	132.0	131.9 ^(e)	- 0.1
	C ₁₂	130.3	132.2 ^(e)	1.9
	C ₁₃	130.3	96.5	-33.8
	C ₁₄	132.0	103.0	-29.0
	C≡O	-	231.4	-

(a) ppm downfield from internal TMS; (b) $\Delta = \delta_{\text{complex}} - \delta_{\text{free ligand}}$; (c)(d)(e) the assignments can be reversed.

room temperature on 0.5M solutions (0.1M for complexed phenantrene) in anhydrous, oxygen free, CDCl₃, on a Bruker WH-90 spectrometer operating at 22.63 MHz in the pulsed Fourier Transform mode. The computer used (Nicolet BNC 12) allowed acquisition of 4096 output data points in the transformed spectra. Chemical shifts are reported in ppm downfield from internal tetramethylsilane.

ACKNOWLEDGMENTS

This work has been supported by CNR through its "Centro di Studio sugli Stati Molecolari Radicalici ed Eccitati".

REFERENCES

- (1) G.M. Bodner, L.J. Todd, Inorg. Chem. 13, 360 (1974).
- (2) T.B. Brill, A.J. Kotlar, Inorg. Chem. 13, 470 (1974).
- (3) B.E. Mann, J. Chem. Soc. (Dalton) 2012 (1973).
- (4) D.J. Thoennes, C.L. Wilkins, W.S. Trahanowsky, J. Mag. Res. 13, 18 (1974).
- (5) T.D. Alger, D.M. Grant, E.G. Paul, J. Amer. Chem. Soc. 88, 5397 (1966).
- (6) H.L. Retcovsky, R.A. Friedel, "Spectrometry of Fuels" p. 90, Plenum Press, N.Y., (1970).
- (7) R.H. Martin, J. Moriau, N. Defay, Tetrahedron 30, 179 (1974).

- (8) J.B. Stothers, "Carbon-13 NMR Spectroscopy", Acad. Press, N.Y. (1972).
- (9) B.P. Roques, C. Segard, S. Combrisson and F. Wehrli, J.Organomet.Chem. 73, 327 (1974).
- (10) B. Denbzer, E.O. Fischer, H.P. Fritz, C.G. Kreiter N. Kriebitsch, H.D. Simmons, B.R. Willeford, Chem. Ber. 100, 3084 (1967).
- (11) D.A. Brown, J.R. Raju, J.Chem.Soc. A, 1617 (1966).
- (12) D.E.F. Gracey, W.R. Jackson, W.B. Jennings, S.C. Rennison, R. Spratt, J. Chem. Soc. (B), 1210 (1969).
- (13) F. Coletta, G. Gambaro, G. Rigatti, to be published.
- (14) E.O. Fischer, K. Öfele, H. Essler, W. Fröhlich, J.P. Mortensen and W. Smmlinger, Chem. Ber., 91, 2763 (1958);
E.O. Fischer, N. Kriebitzsch and R. Dietrich Fischer, Chem.Ber., 92, 3214 (1959);
N.S. Nametkin, V.M. Vdovin, E.B. Portnykh, E.Sh. Finkel'shtein, V.A. Poletaev and A. Yu. Koshevnik, Dokl. Chem., 209, 218 (1973).

Received: 9-8-77

Accepted: 9-21-77